If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-4t=4
We move all terms to the left:
t^2-4t-(4)=0
a = 1; b = -4; c = -4;
Δ = b2-4ac
Δ = -42-4·1·(-4)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{2}}{2*1}=\frac{4-4\sqrt{2}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{2}}{2*1}=\frac{4+4\sqrt{2}}{2} $
| 50-5x=180 | | 16-z=13 | | p2+5p-6=0 | | z−612=-512 | | 25/x=12,5 | | 2q+431=867 | | 5x-153=6x+56 | | 12x+26=6x+98 | | 15y-20=100.y | | −9(12f−3)=4(512−12f) | | 6x+21=3x+63 | | -3(x-7)=-4x | | (x+5)4=60 | | -4/5m=2/9 | | -p=-2p−10 | | -3t+6=3t−6 | | -8j=-9j+8 | | 3y+70=360 | | (12x+8)+(17x-2)=180 | | 3y+70=180 | | -1−4q=9+q | | 4x+2+2x=2(3x+1) | | -7h+8=-8h | | 22x+9=97 | | 8w=-8+6w | | 5x^2+70x=-60 | | -8+9n=7n | | 15x-27=33 | | 6.1x-7.2=47.7 | | 8x+78=2x+114=180 | | 4y+10=75 | | 5g40+-7=103 |